
i 

PHOTOMETRY OF THE EARTH FROM MARINER I I  ^ I  

Robert L . WiIdey 

Division of Geological Sciences and 
Mount Wilson and Palomar Observatories, 
California Institute of  Technology and 
Carnegie Institution of Washington 

GPO PRICE $ 

OTS PRICE(S) $ 

Hard copy (HC) /A9 / 

Microfiche (M F) *a 

*-I  
I ne access i o  ihe ielemeiry record which pi-~vlde; the data f G i  this s t ~ d y  I: by 
courtesy of the Jet Propulsion Laboratory, California Institute of Technology, 
Pasadena, California . 

'Contribution N o .  1264 of the Division of Geological Sciences, California Institute 
of Technology, Pasadena, California. 



ABSTRACT 

The Earth tracking system aboard the Mariner I I  spacecraft has coTlected photo- 

metric observations of the Earth as a by-product of i t s  navigational duties on the fl ight 

to Venus. The observations show good agreement with the phase curve for the Earth 

that was previously found by observing the earth-lit moon. Diurnal variations in 
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Introduction. A l l  previous photometric studies of the total visual flux 

(i .e. integrated over the apparent disk) of the earth have been made by measuring 

the brightness of  that portion of the moon which i s  illuminated only by sunlight that 

has been reflected from the earth. The classical work in this field has been that of 

Danjon (1954), using the "cat-eye" photometer, and i s  the source of the presently 

accepted value of the albedo of the earth. Such measurements are based on a visual 

nul ling of the brightness-suppressed sunlit portion of the moon against the unsuppressed 

earthlit portion. The amount of suppression, accurately known, constitutes the 

fundamental datum. It i s  then necessary to make a completely independent set of 

comparisons of  the sunlit moon with a constant source, usually the sun, before an 

absolute visual flux for the earth can be obtained. Danjon's method solves quite well 

the problem of atmospheric extinction. 

There are three principal difficulties to be enc.-untered with the use of the 

moon as an intermediary in  doing photometry of the earth. (I) The sunlit portion i s  

the source of considerable scattered light i n  the earthlit image which may make 

measurements systematically too high, and as one approaches full moon the amount of 

scattered light increases while the amount of earth-shine decreases. (2) To within 

rather narrow l imits, the fixed location of an observatory imposes an unwanted 

correlation between the earth's phase angle, as seen from the moon, and the geographic 

longitude and latitude of the sublunar point. The latitude bias thus introduced in  the 

\v earth's phase curve can be investigated by examin8 the observations for seasonal 

variations . Although the longitude effects can be investigated by making measurements 

from observatories wei i distributed over the earth's surface , such observaiions hove been 

previously collected only in France. A restrictive corollary of this effect i s  that the 

earth's phase angle cannot be held constant while the geography presented upon i t s  disk 

i s  varied and any implied brightness changes are measured. (3) The lunar neighborhoods 

on opposite sides of the terminator that are intercompared may possess intrinsic sources of 
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brightness difference which would be present even under illumination by the same f lux. 

They may differ slightly in  normal albedo, and must also possess differences, of varying 

magnitude, due to the non-degeneracy of the moon's photometric function i n  any of i t s  

three degrees of freedom. 

Such difficulties are alleviated when one does photometry of the earth from space. 

Such observations are the useful by-product of the Mariner - I 1  spacecraft's guidance 

instrumentation . 
Observations. The reduceable data were collected during the 52 day period 

from September 29 to November 22, 1962. Prior to the earlier date the telemetry indicated 

an abnormally low signal by nearly a factor of 100, the explanation for which remains 

elusive. Recovery was sudden and was followed by indications of normal operation. 

Later than November 22, the temperature, which had veen rising rapidly, was too 

high to be corrected for in  the data reduction. It w i l l  be seen that the method of correction 

for the temperature dependence of responsivity begins to fa i l  toward the latter part of 

the 52 day period. 

The photometer used to collect these observations constitutes one aspect of the 

the Long Range Earth Sensor (LRES). This device has been described in  detail by 

G . W .  Meisenholder i n  the internal publications of the Jet Propulsion Laboratory (SPS 

37-6, -9, -14, and -16, Vol. 11) and by McLauchlan (1964). 

are of l imi ted edition, a short redescription w i l l  be given. 

Inasmuch as these reports 

The LRES uses a single, end-on, 3/4 -in. diameter, S - II photocathode Dumont 

photomultiplier tube whose f ield i s  limited by a fine aperture stop. Both stop and 

detector are behind the focal plane. Coincident at a l l  times with the focal plane i s  a 

modulating mask attached to a 22 cps vibrating read. Ahead of the modulating mask i s  

a fixed aperture, preceded in the optical train by the objective, which i s  a 7 - element 

- f I .2 lens of 2 inch focal length. The purpose of  the LRES i s  to provide information 

regarding orientation i n  space for the purpose of performing navigational and orientational 



maneuven. In this function the photomultiplier tube serves only as a light detector 

and has no position discrimination by itself. 

The vibrating reed moves through a sufficient arc so that the modulating mask 

completely uncovers the fixed aperture at the extremes of motion. The photoelectric 

output, therefore 

mask are such that a shift of the position of the Earth image in  hinge causes a variation 

in the output pulse width, while a shift i n  rol l  causes a variation in  phase (or time) 

of the photoelectric output relative to the reed motion. These properties of the output 

waveform are detected and provide dc error signals for attitude correction. Also 

present i n  the output are signals which indicate that an object is being tracked by 

the sensor and the amount of light being sensed. 

i s  a series of pulses. The shapes of the knife edges of the modulating 

The threshold of the unit i s  approximately 5 x IO-'' W/CM2 (blackbody bolo- 

W/CM2. -7 
metric at 6000'K) and the maximum permissible sustained signal i s  5 x IO 

The photometer signal was calibrated relatively, over the entire dynamic 

range to be encountered on the mission by use of  an earth simulator. Absolute 

calibration was obtained with the aid of a National Bureau of Standards lamp. N o  

in-flight calibration existed. The foot-candle (ft-cd) has been chosen as the unit i n  

which to express the results of the photometry. It i s  a standard unit and i s  based on 

a radiation bandpass that does not differ from the photometer bandpass by as much as 

any other logical choice except, of course, a mean monochromatic flux corresponding to 

the effective wavelength of the photometer. It can be readily shown that the reduction 

equation i s  exactly given by: 

where the subscript V following the expectation-value brackets denotes that the quantity 

within the brackets has been weighted over wavelength according to the response function 

of the eye (Walsh, 1953) . A subscript SI1 implies that the weighting function has been 
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F i g . I . 
Long Range Earth Sensor. 

Spectral transmission curve for the objective lens of the type used in Mariner 11's 
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multiplied by the transmission of the objective lens (Figure I) 
the response of an SI1 photoemissive surface (Radio Corporation of America, 1958). 

A 
The quantities fo ( A )  and fe( A )  are the spectral energy distributions, in arbitrary 

units, of the standard source and the earth flux, respectively. So i s  the foot-candle 

output of the standard source. RO, 70') i s  the ratio of the response at 7OoF, at which 

temperature the laboratory measurements were made, to the response at T, the temperature 

of the photometer at a given measuring time, which i s  also in  the telemetry record. 

I i s  the photoelectric current produced by the earth flux and lo i s  the photo-current 
8 

produced by the standard source. 

Measurements of fo( A ) were undertaken in the laboratory and are shown in  

Figurea. f,( A) was taken as the product of three factors. The first i s  the empirecal 

solar continuum published by Minnaert (1953). The second i s  one minus the Frauhofer 

line blanketing coefficient published by Michard (1950). The third term must alow 

for the wavelength dependence of the overall reflectivity of the earth. The only 

information bearing upon this are Oanjon's 3 color observations. Danjon gives a color 

index (C .I .) for earthshine transformed to the magnitude-color system of Rougier (1937). 

He finds a seasonal variation. The median color has been adopted, which should 

be an optimum procedure since the sub-Mariner point was always close to the equator. 

A heuristic procedure was adopted to make use of this C . I .  of 0.68. Rougier's C .I . of 

the moon shining by direct sunlight is  I .IO. Thus the earth's reflectivity at the blue 

effective wavelength i s  -0.42 magnitudes, or 47.3 percent, higher than it i s  at the 

visual effective wavelength. It remains to specify the effective wavelengths. For this 

purpose an ordinary color equation was assumed connecting C .I. to the Johnson (1955) 

BV system . 
B - V  = A  (C.I.) + C  (2) 

Using Rougier's values of C . I .  for the sun (0.79) and the moon, and values of 

B - V for the sun of 0.60 (Stebbins and Kron, 1957) and for the moon of 0.85 (van den 

Bergh, 1962; Wildey and Pohn, 1964) equation 2 was solved for A .  Interpreting A in  



0 
cv 
T 

0 
v - 
0 
0 
T 

0 
m 

0 
00 

0 
b 

0 a 

0 
Ln 

0 
d- 

0 
rr) 

0 cu 

0 
T- 

O 

u- 
0 
S 
0 

u 
S 
3 

.- 
4- 

u- 
U 

0" . 
L 
a, 

0 
3 

LL Q 
a, > 
0 
.- 0 
c 

s a 
e 3 

t 0 

I 

rc 

v) 
L 

S I- .- . 

a, > 
0 
a, 
Qi 

.- 
t 

- 

0 

0) .- 
LL 



- 5  - 

terms of the wavelength baselines in  the usual way (e .g . Wildey and Murray, 1964; 

Mathews and Sandage, 1963) and assuming the effective wavelengths of B to be h443OA 

and of both V and Rougier's yellow magnitude to be )t5540A, the blue effective wavelength 

of Rougier becomes X4230A. The curve of the reflectivity of the earth versus wavelength 

was then assumed to be linear with a value of I .47 at A4230A and I .OO at )\5540A. 

This source of uncertainty may imply a systematic error in the photometry of I O  or 20 

percent. 

Three data points were obtained in the laboratory relating photometer responsivity 
3 

to temperature. They are plotted i n  Figurex. A smooth curve, whose functional 

form could not be specified, was fitted to these three points by eye. The accuracy of the 

correction provided implies i t  i s  an insignificant source of systematic error for most of 

the data of  the present study. Barring a highly improbable interpretation of the later 

data , however, the temperature renders the latter part of the observations unacceptable 

for the study of other than diurnal brightness variations. 

The possibility of the existence of other unknown sources of systematic error 

cannot be completely discounted in view of  the unexplained behavior of  the LRES signal 

at the beginning of  the f l ight .  

The only important source of random error i s  the number of significant digits 

carried i n  the telemetry and results in an uncertainty of about - + 2 percent. Extracting 

a tabulation of observations from the telemetry record becomes primarily a problem of 

identifying the recorded times when a given signal i s  holding fast and when the frequency 

of truncation between two consecutive signal numbers i s  equal. 

The observations are tabulated in  Table I .  Most of the column headings are self- 

explanatory. Column one l i s ts  the geocentric julian day beyond 2437937. Coiumn 7 

l i s t s  the luminous flux of the earth normalized to a distance of  one astronomical unit  

assuming an inverse square dependence. This flux has been temperature corrected. 

Results. The integral brightness versus phase of  the earth over the range in phase 
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F i g . 4 . Luminous Flux of the entire visible Earth versus the angle, as seen from the 

Earth, between the sun and the direction of measurement. Plot has been corrected for 

temperature variations of the photometer. 
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4 5 
angle possible for the present study i s  shown i n  Figure x. Figure xshows, for comparison, 

the same plot uncorrected for temperature. 

Chronologically the phaseangle decreases from the maximum 45' shown to the 

minimum indicated in the figure and then again increases. This minimum corresponds to 

about the time that the temperature begins to rise sharply. The failure to reproduce 

the phase curve recorded before minimum phase, as the Sun-Earth-Mariner angle i s  now 
3 

increased, i s  apparently a failure of  Figure X to represent the responsivity variation at 

these higher temperatures. 
4 - 5  

The scatter present i n  the sequences of  Figures fl( and #: is merely the diurnal 

brightness variation whose periodicity i s  very short compared to the time required to 

produce a significant change in  phase-angle. + .5 
It can be seen in  Figures %and X tha t  there i s  also present a semi-periodic l ight 

variation superimposed on the diurnal effect, of approximately the same or slightly 

larger amplitude, but wi th a characteristic period of about 5 to 6 days. No satisfactory 

explanation for this phenomenon can be offered at  present. 

The large open circles represent Danjon's mean curve for the Earth's integral 

brightness versus phase, to which has been applied a normalization scale factor to f i t  

the present data at Danjon's minimum phase angle. Danjon's relation has the seasona 

variation averaged out. It should thus correspond to the Mariner photometry whi ch 

was always near zero geographic latitude, except for the longitude effect mentioned 

earlier. The agreement between the indirect and the direct photometry i s  good. Unfor- 

tunately, investigation at the larger more crit ical phase angles was not permitted by the 

trajectory. Hopefully, this important data w i l l  be provided by the LRES data collected 

on the Mariner B f l ight to Mars. 

The scale factor found necessary to be applied to Danjon's data in order to 

produce agreement wi th the present measurements was 0, 4-82 . In  view of  the 

size of previously investigated systematic errors and especially because the abnormal 
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behavior o f  LRES during the early period of the fl ight has not been satisfactorily 

explained, the attachment of significance to this deviation should be viewed with 

caution. 

Three degrees of freedom are associated w'th the specification of Earth's luminous 

flux i n  any kind of steady state: (I) the earth's phase angle from the direction of 

measurement; (2) the geographic longitude passing through that point on the Earth's 

surface where the direction of measurement passes through the zenith; and (3) the corres- 

ponding latitude. In the present study we may assume that the third degree of freedom 

has been held approximately constant. It i s  therefore of significance to ask what the 

locus of relative brightness extrema in  the (Earth phase angle, sub-Mariner longitude) 

plane looks l ike.  Table I has been examined for relative maxima and minima and the 
6 

associated data have been plotted in Figurex. 

systematic effect associated with phase. The longitudes associated with the most 

There does not appear to be a very 

pronounced maxima correspond to a point i n  the Atlantic Ocean above the eastern extreme 

of South America, and appear to correspond very nearly to a maximum in projected 

land-fraction. The most pronounced minima i s  i n  the center o f  the Pacific Ocean and 

represents approximately a minimum in projected land fraction . 
I n  order to obtain an estimate of the relative reflecting power of  landforms 

compared to ocean, the following simple analysis, which ignores any possible Iimb- 

darkening the Earth may exhibit, was undertaken. A globe of  the Earth was photographed 

wi th  the sub-camera point corresponding to the geographic coordinates of the sub-Mariner 

point for the means of each of the above two brightness extrema. The two photographs 

were planimetered over the entire projected disk. Thus the phase-angle was assumed zero. 

Table I was then examined for maximum-minimum pairs which satisfied the criteria that 

the maxima fa l l  between 280° and 360' longitude and the minima fa l l  between 170' and 

240'. In addition the elements of a given pair were required to differ by less than I .5 

in  phase angle. Twenty-two such pairs were found. The ratio of maximum to minimum 
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brightness was evaluated. This ratio appears uncorrelated with phase angle. In  view 

of this fact and the fact that no distinct trend i s  exhibited against phase angle in  

Figure x, the assumption of a fu l l  earth i n  planimetering the photographs seems justified. 

The results of the planimetry yield that the projected land fraction for the 

Pacific point i s  0.061 while that for the Atlantic sub-Mariner point i s  0.355. The mean 

ratio of maximum to adjacent minimum brightness i s  I .I2 + .01 S .D Simple calculations 

then reveal that, for equal illuminated areas, average landform i s  I .41 + .03 S .D. 

times as bright as average ocean. Water has a higher albedo than land, but i s  not as 

good a back-scatterer . Inasmuch as the range in  phase angle was not too far from 

zero, this might be part of the explanation for these relative reflectivities. However, 

one would thus expect to see the ratio of maximum to minimum brightness exhibit a 

6 

- 
- 

phase dependence, contrary to the present observations. An alternative explanation 

would suggest that clouds, phenomena of high albedo, tend to concentrate over land 

relative to water. 

Two exceptiona 

occur over the Pacific. 

not suggest exceptional 

6 
cases are noted in F igurex  where maxima rather than minima 

Meteorological reports from the vicinity at these times do 

cloudiness. Perhaps the ocean region from which a specular 

reflection of the sun i s  obtained was unusually becalmed. A more detailed mathematical 

analysis of these data entailing a running correlation with world-wide meteorological 

conditions and especially Tiros satellite photographs w i l l  be the subject of a later paper. 
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16.604 
16.678 
16.767 
i6.824 
16.973 
17 .I37 
17 .I84 
17 .211 
17. .783 
18 .356 

330 
2 13 
139 
48 

316 
246 
220 
I75 
76 

321 
260 
227 
I89 
144 
71 

354 
330 
310 
280 
260 
I96 
I06 
47 

326 
288 
284 
I75 
75 
61 
32 

342 
132 
339 
257 
35 

238 
217 
190 
39 

259 
224 
I87 
68 

298 
226 
164 
I37 
I05 
85 
30 

33 I 
314 
304 
99 

25 I 

-I .9 
-I .9 
-I .9 
-I .9 
-I .9 
-I .9 
-I .9 
-I .9 
-I .9 
-I .9 
-I .9 
-I .9 
-I .9 
-I .9 
-I .9 
-I .9 
-I .9 
-I .9 
-I -9 
-I .9 
-I .9 
-I .9 
-I .9 
-I -9 
-I .9 
-I .9 
-I .9 
-I .9 
-I .9 
-I .9 
-I .9 
-I .9 
-I .9 
-I .9 
-I .9 
-I .9 
-I .9 
-I .9 
-I .95 
-I .96 
-I .96 
-I .97 
-I .98 
-I .99 
-I .99 
-2 .oo 
-2 .oo 
-2 .oo 
-3 nn 
-2.01 
-2.02 
-2.03 
-2.04 
-2.05 
-2.05 

L . Y Y  

36.7 
36.3 
36.1 
35.7 
35.4 
35.3 
35 . I  
35 .O 
34.6 
34.3 
34.1 
34 .O 
33.9 
33.7 
33.3 
33 .I 
33 .O 
32.9 
32.8 
32.7 
32.6 
32.3 
32.1 
31.8 
31.7 
31.7 
31.3 
31 .O 
30.9 
30 -8 
30.7 
30 .O 
29.4 
29.1 
28.3 
27.9 
27.8 
27.7 
27 .I 
26.7 
26.6 
26.4 
26 .O 
25.6 
25.4 
25.2 
25 .I 
25 .O 
24 .? 
24.8 
24.6 
24.5 
24.4 
23.8 
23 .I 

I041 
I049 
I055 
1061 
I069 
I073 
I075 
1078 
1086 
I095 
I099 
1101 
I IO4 
I IO8 
1115 
1119 
I121 
1122 
I I24 
1126 
I133 
I138 
I I42 
I I50 
I152 
I153 
I I62 
I I70 
I171 
I173 
I177 
I I95 
I205 
1213 
1231 
I243 
I246 
I248 
I261 
I272 
I274 
I279 
I288 
I300 
I305 
131 I 
1314 
1316 
!2!8 
1323 
1328 
1330 
1331 
1348 
1368 

88 .O 
87.7 
87.5 
87.3 
87 .O 
86 7 
86.3 
86 .O 
86.3 
86.7 
87 .O 
87.3 
87.7 
88 .O 
87.9 
87.8 
87.7 
87.6 
87.4 
87.3 
87.2 
87 .O 
87 .O 
87 .O 
87 .O 
87 .O 
87 .O 
87 .O 
87 .O 
87 .O 
87 .O 
87 .O 
87 .O 
86 7 
87.5 
86.3 
85.8 
85.5 
85.4 
85.3 
85.2 
85 .O 
85 .O 
85 .O 
85 .O 
85 .O 
85 .O 
85 .O 
85 0 
85 .O 
85 .O 
85 .O 
85 .O 
85 .O 
85 .O 

2.56 
2.43 
2.35 
2.48 
2.66 
2.52 
2.41 
2.31 
2.46 
2.63 
2.53 
2.44 
2.34 
2.49 
2.64 
2.77 
2.96 
2.79 
2.68 
2.55 
2.46 
2.60 
2.74 
2.90 
2.79 
2.68 
2.59 
2.62 
2.88 
2.77 
2.91 
2.74 
2.88 
2.81 
2.90 
2.79 
2.69 
2.79 
2.92 
2.90 
2.79 
2.91 
3 .I2 
3.03 
2.92 
3.07 
3.25 
3.08 
- 7 -. -94 
3 .I3 
3 .I5 
3.32 
3 .I6 
3 .IO 
3.07 



18.428 
18.505 
18.881 
19.263 
19.395 
20 .I32 
20.444 
20.673 
21 .090 
21 .458 
21 .a33 
26 .301 
26 ,493 
26 .697 
26 .966 
27.068 
27.399 
27.823 
28.073 
28 .I98 
28.241 
28.467 
28.698 
28.948 
29.097 
29.333 
29.435 
29.687 
23.908 
30 .I32 
30.305 
30.694 
31 , 1 1 1  
31 .257 
31 .406 
31 .492 
31 .543 
31.630 
31 .811 
32.032 
32.201 
32.281 
32.785 
33.295 
33.471 
33.641 
33.883 
34.214 34 e333 
34.431 
34 -525 
34.636 
34.753 
34.818 
34.894 
35 .031 

225 
I96 
61 

282 
220 
3 29 
21 6 
132 
343 
210 
74 

261 
I92 
I I8 
20 

284 
224 
71 

341 
295 
279 
I99 
I I6 
24 

302 
245 
209 
I I7 
22 

317 
253 
I I3 
321 
269 
216 
I86 
171 
136 
71 

350 
288 
259 
77 

252 
189 
I27 
39 

280 
238 
203 
I67 
I27 
86 
64 
34 

345 

-2.06 
-2.07 
-2.08 
-2 .II 
-2 .II 
-2 .II 
-2 . I  
-2.2 
-2.2 
-2.2 
-2.2 
-2.50 
-2.52 
-2.53 
-2.56 
-2.59 
-2.62 
-2.66 
-2.67 
-2.68 
-2.68 
-2.71 
-2.72 
-2.75 
-2.78 
-2.79 
-2.80 
-2.83 
-2.85 
-2.80 
-2.89 
-2.94 
-2.97 
-2.98 
-2.99 
-3.01 
-3.03 
-3.05 
-3.07 
-3.09 
-3.23 
-3.24 
-3.32 
-3.38 
-3.41 
-3.5 
-3.5 
-3.5 
-3.5 
-3.5 
-3.5 
-3.5 
-3.5 
-3.5 
-3.5 
-3.5 

23 .O 
22.9 
22.5 
22 .o 
21.8 
21 .o 
20.7 
20.4 
20 .o 
19.6 
I9 .I 
15.5 
15.4 
15.2 
15 .O 
14.8 
14.7 
14.3 
14.1 
14 .O 
13.9 
13.8 
13.6 
13.4 
13.3 
13.2 
I3 .I 
12.9 
12.7 
12.6 
12.5 
12.4 
12.2 
12.1 
12 .I 
12 .o 
II .9 
II .9 
II .8 
II .8 
I I  .4 
II .4 
II .4 
II .4 
I I  .3 
II .3 
II .3 
II .3 
!! .3 
II .3 
II .3 
II .3 
II .4 
I1 .4 
II .4 
II .4 

1371 
I373 
1386 
1398 
1402 
I427 
1437 
1446 
1461 
I473 
1487 
1616 
I625 
1632 
1636 
I654 
1660 
I677 
1686 
I693 
I 698 
1704 
1714 
1724 
I734 
1741 
I744 
1756 
1767 
I775 
1783 
I800 
1818 
I826 
I830 
I835 
I838 
1881 
I850 
1860 
1915 
1918 
I942 
I966 
1977 
I986 
1997 
201 4 ---- 7n7n 
2024 
2029 
2034 
2040 
2044 
2048 
2055 

85 .O 
85 .O 
85 .O 
85 .O 
85 .O 
84.9 
84.7 
84.4 
84 .O 
84 .O 
84 .O 
83 .O 
82.5 
82 .O 
82 .O 
82 .O 
82 .O 
82 .O 
82 .O 
82 .O 
82 .O 
82 .O 
82 .O 
82 .O 
82 .O 
82 .O 
82 .O 
82 .O 
82 .O 
82 .O 
82 .O 
82 .O 
82 .O 
82.2 
82.5 
82.8 
83 .O 
82.8 
82.5 
82.3 
82 .O 
82.7 
83.3 
84 .O 
84 .O 
84 .O 
84.1 
84.2 
84 -3 
84.4 
84.5 
84.6 
84.6 
84.7 
84.7 
84.8 

2.93 
3.09 
3 .30 
3 .I7 
3 .I6 
3 .I7 
3 -20 
3.39 
3.32 
3.26 
3.41 
3.52 
3.30 
3.34 
3.34 
3.67 
3.44 
3.38 
3.55 
3.82 
3.60 
3.51 
3.41 
3.60 
3.73 
3.64 
3.53 
3.43 
3.62 
3.80 
3.68 
3.61 
3.83 
3.70 
3.63 
3.51 
3.64 
3.75 
3.72 
3.83 
3.85 
3.63 
3.49 
3.41 
3.25 
3.49 
3.35 
3.49 
3 ;.1A 
3 .I7 
3.37 
3.49 
3.42 
3.24 
3.45 
3.57 



35 .I69 
35.239 
35.314 
35.434 
35.533 
35.639 
35.730 
35 815 
35.909 
36.028 
36 .I92 
36.265 
36.385 
36.739 
37.042 
38 .I07 
38.410 
38.773 
38.850 
39.044 
39.244 
39.398 
39.352 
39.447 
39 556 
39.627 
39.684 
39.750 
39.848 
39.979 
41 .I53 
41 .I85 
41 .441 
41 .760 
41 .845 
41 .935 
42.031 
42.310 
42.579 
42.644 
42.715 
42.752 
42.799 
42.989 
43 .I92 
43.382 
43.553 
43.763 
44.007 
44.075 
44.229 
44.371 
44.506 
44.647 

296 
270 
243 
201 
164 
I25 
92 
62 
28 

345 
285 
259 
216 
88 

339 
314 
206 
76 
45 

336 
263 
244 
225 
I91 
I49 
I25 
I 05 
81 
45 

358 
294 
28 I 
190 
74 
43 
II 

342 
236 
138 
I I5 
90 
76 
60 

350 
276 
208 
I 46 

345 
318 
262 
21 I 
I62 
I12 

-L 

/U 

-3.6 
-3.7 
-3.7 
-3.8 
-3.8 
-3.8 
-3.8 
-3.8 
-3.8 
-3.8 
-3.8 
-3.8 
-3.9 
-3.9 
-3.9 
-4 .o 
-4 . I  
-4.2 
-4.2 
-4.2 
-4.2 
-4.2 
-4.2 
-4.2 
-4.3 
-4.3 
-4.3 
-4.4 
-4.4 
-4.4 
-4.5 
-4.6 
-4.6 
-4.7 
-4.7 
-4.7 
-4.8 
-4.8 
-4.8 
-4.8 
-4 -9 
-4.9 
-4.9 
-4.9 
-5 .O 
-5 .O 
-5 .O 
-5 . I  
-5 .I 
-5 .I 
-5.2 
-5.2 
-5.2 
-5.2 

I I  .4 
I I  .4 
II .4 
II .4 
II .5 
II .5 
II .5 
II .6 
I I  .6 
II .6 
II .7 
I I  .7 
II .7 
I I  .9 
12 .o 
12.5 
12.6 
12.8 
12.9 
13 .O 
13 .I 
13.2 
13.2 
13.3 
13.4 
13.4 
13.4 
13.4 
13.5 
13.6 
14.4 
14.4 
14.5 
14.8 
14.9 
14.9 
15 .O 
15.2 
15.4 
15.5 
15.5 
15.6 
15.6 
15.8 
15.9 
16 .O 
16.2 
16.3 
16.5 
16.5 
16.6 
16.8 
16.9 
17 .O 

2063 
2066 
2070 
207 6 
2082 
2089 
2093 
2097 
2100 
2107 
21 I7 
21 20 
21 26 
2140 
2160 
2220 
2230 
2250 
2260 
2270 
2280 
2290 
2290 
2300 
2300 
2310 

2320 
2330 
2400 
2400 
241 0 
2440 
2450 
2450 
2460 
2470 
2490 
2500 
2500 
2510 
2510 
2520 
2530 
2540 
2550 
2570 
2590 
2590 
2600 
261 0 
2620 
2630 

64.8 3.50 
85 .O 3.32 
85 .O 3.23 
85.2 3.05 
85.4 3.28 

85.6 3.32 
85.6 3 .I4 
85.7 3.36 
85.7 3.44 
85.8 3.52 
85.9 3.41 
86.0 3.25 

85.5 3 3 9  

86.0 3.29 
86.5 3.58 
87.0 3.34 
88-0 3.30 
89.0 3.15 
89-5 3.31 
90.0 3.33 
90.0 3.39 
90.5 3.32 
91 .O 3.22 
91 -5 3 .I4 
92.0 3.25 
92.2 3.44 
92.4 3.32 

92.8 3.35 
93.0 3.53 

92.6 3.24 

93.0 3.17 

94.0 2.95 
95.0 2.88 
95.3 2.94 
95.7 3.11 

93.5 3.07 

96.0 3.05 
96.5 3.02 
97.0 2.83 
97.3 2.86 
97.5 2.78 
97.8 2.70 
98.0 2.79 
98.2 2.89 
98.4 2.87 
98.6 2.78 
98.8 2.70 
??.o L . V J  r )  io 
99.5 2.83 
100.0 2.76 
100.5 2.80 
101 .O 2.69 
101.5 2.63 
102.0 2.58 



< 

c 

44.726 
44.807 
45.01 I 
45.218 
45.328 
45.845 
46.277 
46.496 
46.730 
47.032 
47.326 
47.399 
47.465 
47.569 
4.7.715 
47.780 
48.081 
48.459 
48.518 
48.666 
48.986 
49.197 
49.232 
49.309 
49.458 
49.527 
49.572 
49.638 
49.708 
49.878 
50.086 
50 .I59 
50 .I87 
50.275 
50 397 
50.461 
50.534 
50.635 
50.739 
51 .032 
51 .288 
51 .318 
51 .600 
52.052 
52.281 
52.340 
52.399 
52.458 

53 .ooo 
53.254 
53.288 
53.538 
53 .817 

t 

LIQ 
0 ry .“I” 

83 
54 

341 
264 
225 
39 

238 
I60 
80 

330 
225 
I 98 
I74 
136 
84 
61 
312 
I74 
I53 
100 
345 
268 
256 
228 
I74 
I49 
133 
I09 
94 
23 

309 
282 
27 I 
239 
I 96 
172 
I46 
Ill 
72 

328 
235 
224 
121 
319 
239 
213 
I92 
171 
! 13 
336 
245 
233 
I42 
26 

L 

-5.3 
-5.3 
-5.3 
-5.4 
-5.4 
-5.5 
-5.6 
-5.6 
-5.7 
-5.7 
-5.7 
-5.8 
-5.8 
-5.9 
-5.9 
-6 .O 
-6 .O 
-6 .O 
-6 .I 
-6.2 
-6.2 
-6.2 
-6.2 
-6.2 
-6.3 
-6.3 
-6.3 
-6.3 
-6.3 
-6.4 
-6.4 
-6.4 
-6.5 
-6.5 
-6.5 
-6.5 
-6.5 
-6.6 
-6.6 
-6 7 
-6.7 
-6.7 
-6.7 
-6.8 
-6.9 
-6.9 
-7 .O 
-7 .O 
-7 .o 
-7 . I  
-7.2 
-7.2 
-7.2 
-7.3 

(5) 

17 .I 
17.2 
17.3 
17.4 
17.6 
18 .O 
18.3 
18.5 
18.6 
I9 .O 
I9 .I 
19.2 
19.3 
19.3 
19.5 
19.5 
19.8 
20 .I 
20.1 
20.3 
20.6 
20.7 
20.8 
20.8 
20.9 
21 .o 
21 .o 
21 .I 
21 .I 
21.2 
21.3 
21.4 
21.5 
21.6 
21.7 
21.8 
21.8 
21.9 
21.9 
22 .I 
22.4 
22.4 
22.7 
22.9 
23 .O 
23 .I 
23.2 
23.4 
-- 32 -5 
23.7 
23.9 
24 .O 
24 .I 
24.4 

2630 
2640 
2650 
2670 
2680 
2710 
2750 
2760 
2770 
2800 
2820 
2820 
2830 
2830 
2840 
2850 
2870 
291 0 
291 0 
2920 
2940 
2960 
2960 
2970 
2980 
2980 
2980 
2990 
3000 
3010 
3020 
3030 
3030 
3030 
3040 
3060 
3060 
3070 
3080 
3100 
3120 
3130 
3140 
3180 
3210 
3210 
3210 
3220 
3230 
3270 
3290 
3 290 
3310 
3340 

102 .I 
102.2 
102.4 
102.5 
102.7 
102.8 
103 .O 
104.5 
106 .O 
106.3 
106.7 
IO7 .O 
107.3 
107.7 
108 .O 
108.3 
108.6 
108.8 
109 .O 
109.3 
109.7 
110 .o 
110.5 
1 1 1  .o 
Ill .5 
Ill .5 
Ill .7 
Ill .8 
Ill .9 
112 .o 
112.2 
112.3 
112.4 
112.6 
112.7 
112.8 
112.9 
113 .O 
113 .5 
I I4 .O 
I 14.5 
115 .O 
115.2 
115.5 
115.7 
116 .O 
116.3 
116.5 
116.7 
117 .O 
117.5 
118 .O 
118.5 
119.0 

2.37 
2.60 
2.76 
2.69 
2.51 
2.37 
2.34 
2.36 
2.34 
2.51 
2.44 
2.36 
2.31 
2.27 
2.23 
2.22 
2.41 
2.27 
2 .I8 
2.30 
2.38 
2.61 
2.59 
2.56 
2.31 
2.32 
2.26 
2.23 
2.32 
2.42 
2.54 
2.57 
2.69 
2.49 
2.39 
2.32 
2.22 
2.36 
2.49 
2.71 
2.64 
2 -56 
2.54 
2.80 
2.63 
2.53 
2.51 
2.53 - 7 .-- A n  
2.83 
2.73 
2.71 
2.74 
2 -93 


